On a remark by Ohsawa related to the Berndtsson–Lempert method for $L^2$-holomorphic extension

نویسندگان

چکیده

We utilize the Legendre-Fenchel transform and weak geodesics for plurisubharmonic functions to construct a weight function that can be used in Berndtsson-Lempert method, give an Ohsawa-Takegoshi extension type of result. Theorem 4.1 0.1 \cite{OT2017} (Theorem \ref{Theorem A} B} below) follow as two special cases this result, thus answering affirmatively question posed by Ohsawa remark \cite{OT2017}, on method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A remark on boundedness of composition operators between weighted spaces of holomorphic functions on the upper half-plane

In this paper, we obtain a sucient condition for boundedness of composition operators betweenweighted spaces of holomorphic functions on the upper half-plane whenever our weights are standardanalytic weights, but they don't necessarily satisfy any growth condition.

متن کامل

Separate Holomorphic Extension along Lines and Holomorphic Extension from the Sphere to the Ball

We give positive answer to a conjecture by Agranovsky in [1]. A continuous function on the sphere which has separate holomorphic extension along the complex lines which pass through three non-aligned interior points, is the trace of a holomorphic function in the ball. MSC: 32F10, 32F20, 32N15, 32T25

متن کامل

a study on insurer solvency by panel data model: the case of iranian insurance market

the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.

Integral Formulas and the Ohsawa-takegoshi Extension Theorem

We construct a semiexplicit integral representation of the canonical solution to the ∂̄-equation with respect to a plurisubharmonic weight function in a pseudoconvex domain. The construction is based on a construction related to the Ohsawa-Takegoshi extension theorem combined with a method to construct weighted integral representations due to M Andersson.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arkiv för Matematik

سال: 2022

ISSN: ['0004-2080', '1871-2487']

DOI: https://doi.org/10.4310/arkiv.2022.v60.n1.a7